Fonction Exponentielle : Cours Et Exercices Corrigés

May 16, 2024, 6:20 am

Lorsqu'un taux d'évolution T est constaté sur une période, à partir d'une quantité initiale de 1, la quantité en fin de période est de 1 + T. Si cette période est composée de n sous-périodes (ex: la période une année est composée de 12 mois), et qu'on veut déterminer le taux moyen t M d'évolution par sous-période, on utilise la relation 1 + T = ( 1 + t M) n, qui se transforme en d'où. Dans cette dernière relation on constate la présence d'une exponentielle de base 1 + T. Exemple: En France, le prix d'un timbre a doublé entre le 1 er juillet 2010 et le 1 er juillet 2020. À quels taux d'augmentation moyen annuel et mensuel cela correspond-il? En doublant, le prix unitaire d'un timbre est passé de 1 à 2, donc T = 1 puisque 1 + 1 = 2. Exercice corrigé fonction exponentielle bac pro 2017. On va donc utiliser la fonction exponentielle f de base 1 + T = 2 définie par f ( x) = 2 x. Pour calculer le taux d'augmentation moyen, on utilise la formule qui devient

  1. Exercice corrigé fonction exponentielle bac pro 2017
  2. Exercice corrigé fonction exponentielle bac pro maintenance

Exercice Corrigé Fonction Exponentielle Bac Pro 2017

Pour tous réels x et y, exp(x) = exp(y) ⇔ x = y. Pour tout réel x, exp(x) > 1 ⇔ x > 0, exp(x) = 1 ⇔ x = 0, exp(x) < 1 ⇔ x < 0. Exercice: Résoudre dans R l'équation exp(−5x+1) = 1. Résoudre dans R l'équation exp(2x) = 0. Résoudre dans R l'équation exp(x2) = exp(4).

Exercice Corrigé Fonction Exponentielle Bac Pro Maintenance

On peut résumer ces différents résultats dans un tableau de variations suivant: Représentation graphique de la fonction_exponentielle: 4- Dérivée de la fonction exponentielle x ↦ exp(u(x)) Soit u une fonction dérivable sur un intervalle I. Soit f la fonction définie sur I par: Pour tout réel x de I, f(x) = exp(u(x)). La fonction f est dérivable sur I et pour tout réel x de I, f′(x) = u′(x)exp (u(x)). Soit f la fonction définie sur R par: Pour tout réel x, f(x) = xexp(−x 2). Déterminer la dérivée de f. Solution: Pour tout réel x, posons u(x) = −x 2 puis g(x) = exp(−x 2) = exp(u(x)). La fonction u est dérivable sur R. Fonction Exponentielle : Cours et Exercices corrigés. Donc, la fonction g est dérivable sur R et pour tout réel x, g′(x) = u′(x)exp(u(x)) = −2xexp(−x 2). On en déduit que f est dérivable sur R en tant que produit de fonctions dérivables sur R et pour tout réel x, f′(x) = 1 × exp(−x 2) + x × (−2xexp(−x 2)) = exp(−x 2) − 2x 2 exp(−x 2) = (1 − 2x 2)exp(−x 2) 5- Primitives de la fonction exponentielle 1- Les primitives sur R de la fonction x ↦ exp(x) sont les fonctions de la forme x ↦ exp(x) + k où k est un réel.

Fonction exponentielle: Cours, résumé et exercices corrigés I- Théorème 1 Soit f une fonction dérivable sur R telle que f′ = f et f(0) = 1. Alors, pour tout réel x, f(x) × f(−x) = 1. En particulier, la fonction f ne s'annule pas sur R Démonstration. Soit f une fonction dérivable sur R telle que f′ = f et f(0) = 1. Exercice corrigé fonction exponentielle bac pro vie perso. Soit g la fonction définie sur R par: pour tout réel x, g(x) = f(x) × f(−x). La fonction g est dérivable sur R en tant que produit de fonctions dérivables sur R et pour tout réel x, g′(x) = f′(x) × f(−x) + f(x) × (−1) × f′(−x) = f′(x)f(−x) − f(x)f′(−x) = f(x)f(−x) − f(x)f(−x) (car f′ = f) = 0. Ainsi, la dérivée de la fonction g est nulle. On sait alors que la fonction g est une fonction constante sur R. Par suite, pour tout réel x, g(x) = g(0) = (f(0)) 2 = 1. On a montré que pour tout réel x, f(x)×f(−x) = 1. En particulier, pour tout réel x, f(x)×f(−x) ≠ 0 puis f(x) ≠ 0. Ainsi, une fonction f telle que f′ = f et f(0) = 1 ne s'annule pas sur R. II- Théorème 2 Soient f et g deux fonctions dérivables sur R telles que f′ = f, g′ = g, f(0) = 1 et g(0) = 1.